

Abstract

Motivation: Thermal comfort drives ~40% of residential use, with the smart thermostat promising to improve comfort, sustainability, and economics.

Challenge: Current dataset are insufficient for studying the internal workings of the building physics.

Vision: Automate current control systems that interact with building physics. Built upon user behavior models in order to keep occupants comfortable and away from intervention.

Goal: Create a smart home emulator that mimics building physics by bridging information from devices like Ecobee, Raspberry Pi, Home Assistant and Smart plugs.

Conclusion

Building energy simulations poorly capture impact of thermostats and occupant behavior. This prototype enables physically testing these variables without costly field tests.

Human-in-the-Loop Smart Home Prototype

Jhonatan Londono, REU Participant Student, Northern Essex Community College Kunind Sharma, PhD Student, Northeastern University Michael Kane, Civil & Environmental Engineering Department, Northeastern University

Future Research

- Edit, share, and implement advanced control algorithms.
- Integrate emulator into whole building simulation.
- Develop models that interact with building physics, social cognition and human psychology to create robust human in the loop infrastructures

Acknowledgements

• National Science Foundation (NSF). • Northeastern University. Michael Kane Kunind Sharma Jonathan Cohen

Northern Essex Community College

Northeastern University **College of Engineering**

This work was supported by the National Science Foundation Grant #1757650