

Northeastern University College of Engineering

Introduction and Motivation

- analysis.
- lab.

COMPONENT	DESIGN INTENT
Syringe Pump	Bi-directional pump, capacity for 10 ml glass, salt resistant syringe, LabVIEW com
Multi-Position Valve	Multi-position valve head capable of bi-directional movement, manual and automa compatibility for computer connection, LabVIEW compatibility preferred
Mixing Chamber	Cast-acrylic mixing chamber with inner chamfer and 10 ml capacity, inlet/outport a
Fittings	Zero-dead volume fittings for improved accuracy, avoid fittings being part of the flu
Materials	Teflon, stainless steel, and cast acrylic all used to minimize chemical interferences resistance.
Communication	USB serial port connections for computer control, LabVIEW compatibility preferred

Mechanical Design of Sequential Injection Analysis System for Nitrate Sensing Jodi Zangari^{1,2}, Ben Eck², Amy Mueller Ph.D,^{2,3}

¹ Middlesex Community College (Bedford, Massachusetts), ² Northeastern University College of Engineering (Cambridge, Massachusetts), ³ Northeastern University College of Science (Cambridge, Massachusetts),

ed but not required.

Mixing Chamber Design

Figures 5. A) 3D Printing prototype of mixing chamber. B) Lathe used to machine the cast acrylic rod into mixing chamber. C) Modified SolidWorks design of mixing chamber depicting inner chamfer and lower thread location. D) Mixing chamber designed to hold up to 10 ml of fluid and have compatibility with magnetic stirrer. Depicted with 1/16" teflon tubing and Swagelok 1/16" stainless steel compression to NPT fitting for zero-dead-volume fluid path.

PROGRAMMING AND DESIGN CONSIDERATIONS

Prototyping:

- SolidWorks
- Idea Maker
- 3D Printing

Flow Control Software Design

FRONT PANEL

Figure 6. LabVIEW front panel. User interface for instrument control of syringe pump.

INSTRUCTIONS	MODE	VOLUME	PORT POSITION	
Solution A to holding coil	Withdraw	4.5 ml	1	
Switch Valve to port 3				
Solution B to holding coil	Withdraw	0.5 ml	3	
Switch valve to port 5				
Holding coil to mixing chamber	Infuse	5.0 ml	5	
Delay 10 seconds to mix				
Mixing chamber to holding coil	Withdraw	5.0 ml	5	
Switch valve to port 7				
Holding coil to flow cell	Infuse	5.0 ml	7	
Flow cell to holding coil	Withdraw	5.0 ml	7	
Switch valve to port 9 for waste container				
Holding coil to waste	Infuse	5.0 ml	9	

Table 1. Example instruction for making 10% dilution

Machining:

Cast acrylic rod $1 \frac{1}{2}$ diameter ¹/₄" wall thickness for threading 2" height with 1" inner diameter

LabVIEW

- Allows for instrument control of multiple devices Part of the broader software module, this program allows configurations to be applied from front panel and sent to the pump.
- Controls the pump over USB serial port.
- Input settings include, diameter, volume, rate, delay, units and mode.
- Ability to adapt programming or expand into larger, more complex code.

Phase 1: Hardware Testing

COMPONENT	TESTING FOR	STATUS/OBSERVATIONS				
Syringe Pump	Mode	Both working				
		Must remain within syringe limitations				
	Force/rate	according to chart				
	Air bubbles	Small air bubble observed on withdraw				
	Syringe fit	Adjusted to size manually				
Valve	Port position	10 positions, 20 ports				
	Inlet/vent	Inlet = odd, vent=even				
	Fluid flow path	Reverses same path				
		Vent does not release fluid pressure				
	Leak down test	after switching port				
Mixing Chamber	Volume assessment	Approximately 10 ml				
	Fluid flow	Fluid reverses initial path as desired				
	Magnetic stirrer fit	Fits with room to move				
	Air on withdraw	Not if withdrawn slowly				
Holding coil	Volume assessment	Approximately 8.0 ml				
Magnetic Stir Plate	Stand for mixing chamber	Works even with stand above it				
Table 2. Initial testing observations from individual components and						

overall system integration and functionality.

Phase 2: Conductivity Testing for Fluid Concentration Verification

Figure 7. Sodium chloride conductivity testing results depicting linear fit.

Conclusions and Future Work

Conclusions:

- integrated components.
- accurate and working as we hoped.

Future Work:

- the syringe or tubing.

- Increase compound mixtures and solution bank

Proof of Concept Testing

- Testing of all system components for functionality and system integration.
- Fluid volumes and flow paths were also observed and tested.
- Programs such as LabVIEW and Hyperterminal used to verify automated control of valve and syringe pump individually

 Conductivity testing demonstrated that the current mixing procedure for solutions is making expected concentration levels accurately

Milli-Q® (ml)	0.25 M Sodium Chloride (ml)	Concentration (M)	Conductivity (mS/cm)	Expected Conductivity (mS/cm)	Percent Error (%)
8.0	0.0	0.000	0.00134	0.000049	96.343
7.2	0.8	0.025	2.98	2.561	14.072
6.4	1.6	0.050	5.04	4.970	1.379
5.6	2.4	0.075	8.42	7.304	13.256
4.8	3.2	0.100	10.22	9.584	6.227
4.0	4.0	0.125	12.36	11.822	4.356
3.2	4.8	0.150	14.70	14.025	4.590
2.4	5.6	0.175	17.09	16.200	5.210
1.6	6.4	0.200	18.30	18.348	-0.264
0.8	7.2	0.225	19.60	20.474	-4.460
0.0	8.0	0.250	22.70	22.579	0.532

Table 3. Conductivity results for varying concentrations of sodium chloride.

• Preliminary tests showed promising results from overall functionality of the system and all

Conductivity testing followed a linear fit as expected showing mixing procedures are

• Develop a priming procedure for the pump and all fluid lines to decrease possibility of air in

Further development of flow cell component and integration within system Continue programming LabVIEW for simultaneous instrument control of valve and pump