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With an improvement of 0.1557, or 20%, from the mean quality of 

our preliminary trials, our algorithm successfully demonstrates the 

effectiveness of Bayesian optimization within the FDM process. In 

terms of time, we saved 229 trials, or over 76 hours of printing

based on our average print time.

The adoption of optimized FDM techniques within mass 

manufacturing will improve user experiences and broaden 

manufacturing capabilities.

To further continue research into optimizing the FDM 

manufacturing process, an online model of machine learning could 

be developed to adapt parameters and adjust print quality during 

printing itself. Additional studies, potentially testing structural 

stability or dimensional accuracy, can also be done to explore the 

vast relationships between smart manufacturing and FDM printing.
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Plastic products are traditionally mass manufactured through invariant and design-

restrictive methods (e.g. injection molding). Conversely, Fused Deposition Modeling

(FDM) is an additive manufacturing method that extrudes thermoplastic filament

layerwise.

Pros of FDM:

- Designs can be rapidly iterated at low volumes

- Capable of producing complex design features

Cons of FDM:

- Higher production times for repetitive parts

- Production speeds and quality are typically inversely correlated

Our research aims to optimize the parameters of the FDM process to maximize product

quality within a certain range of production speeds and bridge consumer needs with

production capabilities.

Background

Preliminary Testing

Validation

Demonstrate a relation between our chosen parameters—cooling fan speed, extruder 

temperature, extrusion multiplier, print speed—and output quality.

Materials Used
Software: 

Prusa Slicer, Blender, Onshape, 

Google Colaboratory, Google Sheets, 

Adobe Scan

Python libraries and compiler: 

Python 3.10, Pandas, NumPy, Scikit-

Learn, OpenCV, Scikit-Image, 

SciPy, Gspread, Matplotlib

Equipment used: 

Prusa Mk4 FDM 3d-

printer, ESUN 95A 

Thermoplastic 

Polyurethane (TPU),

Puluz Photo Light Box,

Phone Camera

Results of our Bayesian optimization iterations and verification

Final Process parameters:

Cooling Fan 

Speed (% 

Multiplier)

Extruder 

Temperature 

(°C)

Extrusion 

Multiplier

Speed  (% 

Multiplier)

100% 230 1.03 210%

Preliminary 

Mean Quality:

0.781 Optimized 

Quality

0.9367

Abstract
Traditional large-scale plastic manufacturing processes often limit customization and

complexity, impacting the user experience and product potential. Fused Deposition

Modeling (FDM) offers significant advantages in customization and complexity, but

with slower production speeds. This study introduces a Bayesian optimization model

designed to adjust FDM process parameters to enhance output quality while

maintaining low production times. To demonstrate its efficiency, the model was

trained to optimize the surface quality of a thin thermoplastic polyurethane (TPU) wall;

successfully, it identified a global optimum within 27 trials out of 256 parameter

combinations. Through this research, we aim to advance the adoption of FDM in mass

manufacturing and enable the mass production of high-quality, customizable plastic

products in smart manufacturing environments.

We concluded that Trial 6 was the global maximum based on four additional trials

and a test print of the algorithm’s predicted maximum. In total, we conducted 27 trials

(16 preliminary, 6 optimizing, 4 verification, and 1 predicted maximum test)
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