

Integrated Cardiovascular and Pulmonary Team (ICAP)

Northeastern University **Center for STEM Education**

Abstract

Motive

- Investigate the biological underpaintings of the respiratory system following aerosol exposure + its effect on pulmonary health
- Understand how e-cigarette exposure remodels lungs over time

Methods

- High-resolution computed tomography (CT) imaging data employed , generating comprehensive 3D models through SimVascular
- Image-J analysis software utilized to quantify mean intensities of alpha smooth muscle actin (aSMA) and epithelial cell mass in the airways of mice exposed to JUUL e-cigarettes for 8, 16, and 24 weeks

Results

- Examination of 3D models revealed undamaged nasal cavities and unobstructed airflow pathways
- Constriction examinations highlighted an increased response to methacholine leading up to 24 weeks of e-cigarette exposure, at which point there was no response to the drug at the highest exposure period

SimVascular Modeling

- 3D modeling technology utilized to create detailed maps of the nasal cavity in mice.
- Enhanced understanding of airflow through nasal passages and particle filtration.
- Research aims to develop new respiratory treatments, including for asthma and allergies.

Background

Analytical Assessment of Methacholine and aSMA

Experimental Methods

quamous

Model Construction

- 3D model created using SimVascular
- Allowed for a detailed visualization of mice nasal cavity
- Key anatomical structures observed and analyzed turbinates, olfactory epithelium
- Cross-sectional views + virtual tours used to enhance understanding

Data and Graphical Analysis

- Brightfield fluorescent microscope

				epithe	eial + si	mooth	muscle	cells	just smooth muscle cells				
				Area	Mean	Min	Max		Area	Mean	Min	Max	
8 wk Control		branski 1	a	7016.8	3970.5	9	65535	0.5659	3288	4058.8	9	65535	1.2344
	MI	DIONCHI	Ь	8413.6	4450	9	65535	0.5289	4053.4	4665.8	9	65535	1.1511
			a	4654.8	6086.3	14	65535	1.3075	1689.1	6054.1	18	65535	3.5842
		broneni 2	b	7390.8	6133.1	14	65535	0.8298	2427.3	6914.1	20	65535	2.8484
		bronchi 3 <mark>a</mark> b	a	6773.1	3173.7	14	65535	0.4686	4076	2181.2	14	65535	0.5351
			Ь	5827.9	3579.9	17	65535	0.6143	2334.3	3182.8	17	65535	1.3635
	M2	bronchi 1	a	6270.3	1995.3	4	65535	0.3182	3759.3	1404.9	4	35111	0.3737
			Ь	6008.2	5679.3	9	65535	0.9452	5309.9	3555.4	9	65535	0.6696
		bronchi 2 ⁴ t	a	4044.1	7381.3	14	65535	1.8252	1045	7130.1	20	65535	6.8233
			b	6373.4	5697.8	12	65535	0.894	1686	5177.6	12	65535	3.0709
		bronchi 3 ² I	a	12687	8379.1	14	65535	0.6604	9592.5	7871.4	15	63463	0.8206
			b	10900	8192.6	14	65535	0.7516	10900	8192.6	14	65535	0.7516
		bronchi 1	a	6420.5	7593.7	0	65535	1.1827	3103.9	7355.6	0	56938	2.3698
			b	8405.4	8408.6	0	65535	1.0004	3904	7269.2	0	65535	1.862
	6.40	bronchi 2	a	5700	8198.1	0	54172	1.4383	2363.1	8750.7	2	54172	3.7031
	1410		b										
		bronchi 3	a	6125.3	5981.5	4	49995	0.9765	1430.5	5117.1	4	30767	3.5772
			b	14985	5696.6	2	47290	0.3802	3855.9	4312.7	2	47290	1.1185
		bronchi 1 <mark>a</mark> b	а	7109	8127.2	12	65535	1.1432	3215.2	6004.7	19	65535	1.8676
			b	9274.1	6555.6	9	65535	0.7069	4756.6	4713	9	65535	0.9908
	M2	bronchi 2 a b	a	7095.1	8045.8	14	65535	1.134	3411.6	8042.7	19	65535	2.3574
			b	5879.6	8463.3	17	65535	1.4394	1832.2	8709.6	27	58693	4.7537
		bronchi S	a	5880.1	4955.5	17	65535	0.8428	1627.2	4760.4	20	42117	2.9256
			b	9083.8	7651.7	14	65535	0.8423	3668.4	8594.6	19	65535	2.3429
	M3	bronchi 1	a	4569.4	6748.3	7	58874	1.4769	1538.5	6979.1	20	61626	4.5364
			b	4571.7	10125	4	65535	2.2147	1366.8	11688	14	65535	8.5512
8 wk Juul		bronchi 2	a	3234.6	3458.8	7	27169	1.0693	673.91	4619.1	20	23549	6.8542
			b	3668.3	3866.6	9	31774	1.054	1522.8	4237	9	29376	2.7823
		bronchi 3	a	4937.9	8858.6	12	57619	1.794	1976	9482.3	14	55755	4.7987
			Ь	5853.6	5092.6	7	65535	0.87	5853.6	5092.6	7	65535	0.87
		bronchi 1	а	8218.1	11208	10	65535	1.3638	2498.3	10494	27	62703	4.2003
	M4		h	7810.9	11597	10	65535	14848	4167	9417.6	12	50504	2 2601
		bronchi 2	a l	4667.4	8989.8	12	65535	19261	4667.4	8989.8	12	65535	19261
			Ь	74517	£911.1	יבי 7	60000	0.9275	4002.5	7027.0	ے: 0	22614	17555
			U I	1 401.1	0011.1	ſ	00030	0.3213	+003.2	. IUZT.O	3	30017	1.1000

Evaluating Lung Function Changes with Environmental Exposures

Lucca Valdes, Somerville High School, YSP Student **Yosef Ebehisy**, Al-Noor Academy, YSP Student Department of Bioengineering, Northeastern University, Boston, MA.

Professor Jessica M. Oakes, Jacqueline Matz, Matthew Eden, Hannah Kim

• Lung sections stained for smooth muscle actin to measure muscle content in airways, specifically epithelial cell nucelli and smooth muscle tissue

Methacholine used to quantify constrictions of airways • Hypothesized transient abnormalities in smooth muscle cells

Image-J FIJI Analysis Software; measure intensity of smooth muscle tissue Cross sections analyzed ranging from 8 weeks, 16 weeks, and 24 weeks of exposure Measures intensities of smooth muscle tissue to be later compiled in an excel sheet

- Find differences that are meaningful with exposure to pollutants
- Brightfield and Polarized images taken to analyze Picrosirius red collagen stains

Results

Modeling Conclusions

•Using 3D modeling technology, researchers created detailed models of the mice nasal cavity, providing clear visualizations of its internal structures. They carefully included key features of the nasal cavity in the models, enabling a comprehensive examination. •3D models revealed all components of nasal cavity were in their expected positions, suggesting that the mice had healthy and normal nasal structures, essential characteristics for proper respiratory function

Modeling in the Future

Notable presence of clear, unobstructed pathways for airflow within nasal cavities; unhindered airflow is crucial for efficient breathing and ensures the effective exchange of oxygen in the respiratory system

Epithelial and Smooth Muscle Cell Data

• T-tests employed to analyze statistical differences Hypertrophic muscle, indicated by increased aSMA, is associated with airway reactivity 8 and 16 weeks showcased statistical differences between the

exposed and control groups, 24 weeks showed none

Conclusion + Moving Forward

Data Continued

Studies to be conducted on the mice nasal cavities post-aerosol exposure, making this a long-term project utilizing different researchers to build upon each other	 Continue exposue deepere offects
Our final project helps researchers understand how smoke inhalation affects the mice nasal cavities	• These f
Sketches of nasal cavities drawn before and after exposure,	airway potenti
discontinuities to better understand the effects of smoke exposure on the respiratory system	 Study e underst ASM res
Econstial for un donaton din a bour an also might immost the	

Essential for understanding how smoke might impact the respiratory health of both mice and humans

References

Plant, P. J., North, M. L., Ward, A., Ward, M., Khanna, N., Correa, J., Scott, J. A., & Batt, J. (2012). Hypertrophic airway smooth muscle mass correlates with increased airway responsiveness in a murine model of asthma. American Journal of Respiratory Cell and Molecular Biology, 46(4), 532–540. https://doi.org/10.1165/rcmb.2011-02930C Matz, J., Farra, Y. M., Cotto, H. M., Bellini, C., & Oakes, J. M. (2023). Respiratory mechanics following chronic cigarette smoke exposure in the Apoe - / - mouse model. Biomechanics and Modeling in Mechanobiology, 22(1), 233–252. https://doi.org/10.1007/s10237-022-01644-8

Eden, M. J., Matz, J., Garg, P., Gonzalez, M. P., McElderry, K., Wang, S., Gollner, M. J., Oakes, J. M., & Bellini, C. (2023). Prolonged smoldering Douglas fir smoke inhalation augments respiratory resistances, stiffens the aorta, and curbs ejection fraction in hypercholesterolemic mice. The Science of the total environment, 861, 160609. https://doi.org/10.1016/j.scitotenv.2022.160609

Northeastern University College of Engineering

Methacholine Resistance

• Following exposure, mice produce excess collagen in attempts to compensate for the damage the

smoke causes, consequently constricting the airways and making it more difficult for them to expand

Imaging revealed mice exposed for 8 weeks responded to the drug at highest dose, 16 weeks responded much lower dose, 24 weeks didn't have a change in their response (resistance same

• Demonstrates hyperreactivity across 8 weeks and 16 weeks, none at 24 weeks

> uing investigation on the 24-week re group, to be studied to develop understandings of the long-terms of aerosol exposure

findings suggest that regulating muscle hypertrophy could be a ial therapeutic target in asthma

emphasizes the importance of standing the mechanisms underlying emodeling in asthma

8-week control

8-week Juul

Acknowledgments

Center for STEM Education Claire Duggan, Executive Director Jennifer Love, Associate Director Claire Stipp and Yassine Souabny, YSP Coordinators Nicholas Fuchs, Program Manager Mary Howley, Administrative Officer **Department of Bioengineering** Professor Jessica Oakes, PhD Jacqueline Matz, PhD Candidate Matthew Eden, PhD Candidate Hannah Kim, Undergraduate

Funding

NIH/NHLBI grant 1R01HL168719

- 🛱 8 wks air ▲ 8 wks e-cig 16 wks air 16 wks e-cig
- 24 wks e-cig
- ♦ 24 wks air